什么叫做90型电视机,电视是什么模式
来源:整理 编辑:电视机技术 2024-06-06 07:41:00
本文目录一览
1,电视是什么模式
凡是兼容世界各国电视信号的是国际线路,这种电视机不但通收世界信号(PAL和NTSC),而且通用世界照明电源(110V60Hz/220V50Hz)最早先的电视机举例说明松下TC-M25C型就是此种类型,它是上世纪八十年代末九十年代初的产品,不过请你放心现在所生产在线彩电全部是通用的。
2,液晶显示器是谁发明的
液晶显示器原型发明人、现年69岁的美国人乔治·海尔迈耶。 稻盛基金会在新闻公报中说,海尔迈耶“在实现利用液晶的平板显示器领域作出了开创性贡献”,因此授予他本年度京都大奖。 海尔迈耶现为美国新泽西著名的通信公司telcordia的名誉董事,上个世纪60年代,他最先将液晶应用到显示器领域,开发出液晶显示器原型。SHARP公司发明 没有具体哪个人 世界上第一台液晶显示器出现在七十年代初,被称之为TN型液晶显示器(Twisted Nematic,扭曲向列)。八十年代,STN型液晶显示器(Super Twisted Nematic,超扭曲向列)出现,同时TFT液晶显示器(Thin Film Transistor,薄膜晶体管)技术被提出。 补充: 1988年,世界上第一款14寸液晶显示器的研发正式上马。到1990年,夏普因为14寸彩色液晶TFT显示器的研发成就,获得德国AV最高荣誉的Eduard Rhein Award (E.R大奖)。14寸彩色液晶显示器的研发成功,从某种意义上来说,是液晶显示器实用化的开端。
3,液晶显示器里面的主要成分是什么
常见的液晶显示器按物理结构分为四种:(1)扭曲向列型(TN-Twisted Nematic);(2)超扭曲向列型(STN-Super TN);(3)双层超扭曲向列型(DSTN-Dual Scan Tortuosity Nomograph);(4)薄膜晶体管型(TFT-Thin Film Transistor)。1.TN型采用的是液晶显示器中最基本的显示技术,而之后其它种类的液晶显示器也是以TN型为基础来进行改良。而且,它的运作原理也较其它技术来的简单。请参照下方的图片。图中所表示的是TN型液晶显示器的简易构造图,包括了垂直方向与水平方向的偏光板,具有细纹沟槽的配向膜,液晶材料以及导电的玻璃基板。 2.STN型的显示原理与TN相类似。不同的是,TN扭转式向列场效应的液晶分子是将入射光旋转90度,而STN超扭转式向列场效应是将入射光旋转180~270度。3.DSTN是通过双扫描方式来扫描扭曲向列型液晶显示屏,从而达到完成显示目的。DSTN是由超扭曲向列型显示器(STN)发展而来的。由于DSTN采用双扫描技术,因此显示效果相对STN来说,有大幅度提高。4.TFT型的液晶显示器较为复杂,主要是由:萤光管、导光板、偏光板、滤光板、玻璃基板、配向膜、液晶材料、薄模式晶体管等等构成。首先,液晶显示器必须先利用背光源,也就是萤光灯管投射出光源,这些光源会先经过一个偏光板然后再经过液晶。这时液晶分子的排列方式就会改变穿透液晶的光线角度,然后这些光线还必须经过前方的彩色的滤光膜与另一块偏光板。因此我们只要改变加在液晶上的电压值就可以控制最后出现的光线强度与色彩,这样就能在液晶面板上变化出有不同色调的颜色组合了。是目前主流液晶显示器的面板。亮度:显示器亮度一般以cd/m2(流明每平方米)为单位,亮度越高,显示器对周围环境的抗干扰能力就越强,显示效果显得更明亮。此参数至少要达到200cd/m2,最好在250cd/m2以上。 而crt显示器的亮度越高,它的辐射就越大,而液晶显示器的亮度是通过荧光管的背光来获得,所以对人体不存在负面影响(少量)。 对比度:对比度是指在规定的照明条件和观察条件下,显示器亮区与暗区的亮度之比。对比度是直接体现该液晶显示器能否体现丰富色阶的参数,对比度越高,还原的画面层次感就越好。目前液晶显示器的标称为250∶1或者300∶1,高档产品在400∶1或500∶1。 可视角度:液晶显示器属于背光型显示器件,其发出的光由液晶模块背后的背光灯提供,这必然导致液晶显示器只有一个最佳的欣赏角度———正视。当你从其他角度观看时,由于背光可以穿透旁边的像素而进入人眼,就会造成颜色的失真,不失真的范围就是液晶显示器的可视角度。液晶显示器的视角还分为水平视角和垂直视角,水平视角一般大于垂直视角。目前来看,只要在水平视角上达到120度就可以满足大多数用户的应用需求了。 响应时间:响应时间指的是lcd显示器对于输入信号的反应速度,也就是液晶由暗转亮或者是由亮转暗的反应时间。一般来说分为两个部分:tr(上升时间)、tf(下降时间),而我们所说的响应时间指的就是两者之和,响应时间越小越好,如果超过40毫秒,就会出现运动图像的迟滞现象。目前液晶显示器的标准响应时间大部分在25毫秒左右,不过也有少数机种可达到16毫秒。 ps,对比度必须与亮度配合才能产生最好的显示效果。
4,LCD是怎么驱动的
LCD的工作原理
我们很早就知道物质有固态、液态、气态三种型态。液体分子质心的排列虽然不具有任何规律性,但是如果这些分子是长形的(或扁形的),它们的分子指向就可能有规律性。于是我们就可将液态又细分为许多型态。分子方向没有规律性的液体我们直接称为液体,而分子具有方向性的液体则称之为“液态晶体”,又简称“液晶”。液晶产品其实对我们来说并不陌生,我们常见到的手机、计算器都是属于液晶产品。液晶是在1888年,由奥地利植物学家Reinitzer发现的,是一种介于固体与液体之间,具有规则性分子排列的有机化合物。一般最常用的液晶型态为向列型液晶,分子形状为细长棒形,长宽约1nm~10nm,在不同电流电场作用下,液晶分子会做规则旋转90度排列,产生透光度的差别,如此在电源ON/OFF下产生明暗的区别,依此原理控制每个像素,便可构成所需图像。
1. 被动矩阵式LCD工作原理
TN-LCD、STN-LCD和DSTN-LCD之间的显示原理基本相同,不同之处是液晶分子的扭曲角度有些差别。下面以典型的TN-LCD为例,向大家介绍其结构及工作原理。
在厚度不到1厘米的TN-LCD液晶显示屏面板中,通常是由两片大玻璃基板,内夹着彩色滤光片、配向膜等制成的夹板? 外面再包裹着两片偏光板,它们可决定光通量的最大值与颜色的产生。彩色滤光片是由红、绿、蓝三种颜色构成的滤片,有规律地制作在一块大玻璃基板上。每一个像素是由三种颜色的单元(或称为子像素)所组成。假如有一块面板的分辨率为1280×1024,则它实际拥有3840×1024个晶体管及子像素。 每个子像素的左上角(灰色矩形)为不透光的薄膜晶体管,彩色滤光片能产生RGB三原色。每个夹层都包含电极和配向膜上形成的沟槽,上下夹层中填充了多层液晶分子(液晶空间不到5×10-6m)。在同一层内,液晶分子的位置虽不规则,但长轴取向都是平行于偏光板的。另一方面,在不同层之间,液晶分子的长轴沿偏光板平行平面连续扭转90度。其中,邻接偏光板的两层液晶分子长轴的取向,与所邻接的偏光板的偏振光方向一致。在接近上部夹层的液晶分子按照上部沟槽的方向来排列,而下部夹层的液晶分子按照下部沟槽的方向排列。最后再封装成一个液晶盒,并与驱动IC、控制IC与印刷电路板相连接。
在正常情况下光线从上向下照射时,通常只有一个角度的光线能够穿透下来,通过上偏光板导入上部夹层的沟槽中,再通过液晶分子扭转排列的通路从下偏光板穿出,形成一个完整的光线穿透途径。而液晶显示器的夹层贴附了两块偏光板,这两块偏光板的排列和透光角度与上下夹层的沟槽排列相同。当液晶层施加某一电压时,由于受到外界电压的影响,液晶会改变它的初始状态,不再按照正常的方式排列,而变成竖立的状态。因此经过液晶的光会被第二层偏光板吸收而整个结构呈现不透光的状态,结果在显示屏上出现黑色。当液晶层不施任何电压时,液晶是在它的初始状态,会把入射光的方向扭转90度,因此让背光源的入射光能够通过整个结构,结果在显示屏上出现白色。为了达到在面板上的每一个独立像素都能产生你想要的色彩,多个冷阴极灯管必须被使用来当作显示器的背光源。
2. 主动矩阵式LCD工作原理
TFT-LCD液晶显示器的结构与TN-LCD液晶显示器基本相同,只不过将TN-LCD上夹层的电极改为FET晶体管,而下夹层改为共通电极。
TFT-LCD液晶显示器的工作原理与TN-LCD却有许多不同之处。TFT-LCD液晶显示器的显像原理是采用“背透式”照射方式。当光源照射时,先通过下偏光板向上透出,借助液晶分子来传导光线。由于上下夹层的电极改成FET电极和共通电极,在FET电极导通时,液晶分子的排列状态同样会发生改变,也通过遮光和透光来达到显示的目的。但不同的是,由于FET晶体管具有电容效应,能够保持电位状态,先前透光的液晶分子会一直保持这种状态,直到FET电极下一次再加电改变其排列方式为止。
LCD是在背面开一个灯源,然后需要多少信信号就开多少个窗户(液晶)让光透过,一个像素就是三个窗户(RGB)组成。
LCD 是靠电压驱动的,几乎不消耗功率
5,彩色显示器的基色模式是什么
国内电脑市场各种品牌的纯平显示器之间强烈的竞争,各个商家都想在纯平这块大蛋糕上分得最大的份额。而当人们像当初搬15英寸显示器一样把纯平买回家后。我们不仅要问:下一代显示器的热点是什么呢?矛头直指液晶显示器。液晶显示器具有图像清晰精确、平面显示、厚度薄、重量轻、无辐射、低能耗、工作电压低等优点。 液晶显示器的分类 液晶显示器按照控制方式不同可分为被动矩阵式lcd及主动矩阵式lcd两种。 1. 被动矩阵式lcd在亮度及可视角方面受到较大的限制,反应速度也较慢。由于画面质量方面的问题,使得这种显示设备不利于发展为桌面型显示器,但由于成本低廉的因素,市场上仍有部分的显示器采用被动矩阵式lcd。被动矩阵式lcd又可分为tn-lcd(twisted nematic-lcd,扭曲向列lcd)、stn-lcd(super tn-lcd,超扭曲向列lcd)和dstn-lcd(double layer stn-lcd,双层超扭曲向列lcd)。 2. 目前应用比较广泛的主动矩阵式lcd,也称tft-lcd(thin film transistor-lcd,薄膜晶体管lcd)。tft液晶显示器是在画面中的每个像素内建晶体管,可使亮度更明亮、色彩更丰富及更宽广的可视面积。与crt显示器相比,lcd显示器的平面显示技术体现为较少的零件、占据较少的桌面及耗电量较小,但crt技术较为稳定成熟。 液晶显示器的工作原理 我们很早就知道物质有固态、液态、气态三种型态。液体分子质心的排列虽然不具有任何规律性,但是如果这些分子是长形的(或扁形的),它们的分子指向就可能有规律性。于是我们就可将液态又细分为许多型态。分子方向没有规律性的液体我们直接称为液体,而分子具有方向性的液体则称之为“液态晶体”,又简称“液晶”。液晶产品其实对我们来说并不陌生,我们常见到的手机、计算器都是属于液晶产品。液晶是在1888年,由奥地利植物学家reinitzer发现的,是一种介于固体与液体之间,具有规则性分子排列的有机化合物。一般最常用的液晶型态为向列型液晶,分子形状为细长棒形,长宽约1nm~10nm,在不同电流电场作用下,液晶分子会做规则旋转90度排列,产生透光度的差别,如此在电源on/off下产生明暗的区别,依此原理控制每个像素,便可构成所需图像。 1. 被动矩阵式lcd工作原理 tn-lcd、stn-lcd和dstn-lcd之间的显示原理基本相同,不同之处是液晶分子的扭曲角度有些差别。下面以典型的tn-lcd为例,向大家介绍其结构及工作原理。 在厚度不到1厘米的tn-lcd液晶显示屏面板中,通常是由两片大玻璃基板,内夹着彩色滤光片、配向膜等制成的夹板 外面再包裹着两片偏光板,它们可决定光通量的最大值与颜色的产生。彩色滤光片是由红、绿、蓝三种颜色构成的滤片,有规律地制作在一块大玻璃基板上。每一个像素是由三种颜色的单元(或称为子像素)所组成。假如有一块面板的分辨率为1280×1024,则它实际拥有3840×1024个晶体管及子像素。 每个子像素的左上角(灰色矩形)为不透光的薄膜晶体管,彩色滤光片能产生rgb三原色。每个夹层都包含电极和配向膜上形成的沟槽,上下夹层中填充了多层液晶分子(液晶空间不到5×10-6m)。在同一层内,液晶分子的位置虽不规则,但长轴取向都是平行于偏光板的。另一方面,在不同层之间,液晶分子的长轴沿偏光板平行平面连续扭转90度。其中,邻接偏光板的两层液晶分子长轴的取向,与所邻接的偏光板的偏振光方向一致。在接近上部夹层的液晶分子按照上部沟槽的方向来排列,而下部夹层的液晶分子按照下部沟槽的方向排列。最后再封装成一个液晶盒,并与驱动ic、控制ic与印刷电路板相连接。 在正常情况下光线从上向下照射时,通常只有一个角度的光线能够穿透下来,通过上偏光板导入上部夹层的沟槽中,再通过液晶分子扭转排列的通路从下偏光板穿出,形成一个完整的光线穿透途径。而液晶显示器的夹层贴附了两块偏光板,这两块偏光板的排列和透光角度与上下夹层的沟槽排列相同。当液晶层施加某一电压时,由于受到外界电压的影响,液晶会改变它的初始状态,不再按照正常的方式排列,而变成竖立的状态。因此经过液晶的光会被第二层偏光板吸收而整个结构呈现不透光的状态,结果在显示屏上出现黑色。当液晶层不施任何电压时,液晶是在
6,液晶显示器原理是什么
液晶的物理特性液晶是这样一种有机化合物, 在常温条件下,呈现出既有液体的流动性,又有晶体的光学各向异性,因而称为“液晶”.在电场、磁场、温度、应力等外部条件的影响下,其分子容易发生再排列,使液晶的各种光学性质随之发生变化,液晶这种各向异性及其分子排列易受外加电场、磁场的控制.正是利用这一液晶的物理基础,即液晶的“电-光效应”,实现光被电信号调制,从而制成液晶显示器件.在不同电流电场作用下,液晶分子会做规则旋转90度排列,产生透光度的差别,如此在电源ON/OFF下产生明暗的区别,依此原理控制每个像素,便可构成所需图像.液晶的物理特性是:当通电时导通,排列变的有秩序,使光线容易通过;不通电时排列混乱,阻止光线通过。让液晶如闸门般地阻隔或让光线穿透。从技术上简单地说,液晶面板包含了两片相当精致的无钠玻璃素材,称为Substrates,中间夹著一层液晶。当光束通过这层液晶时,液晶本身会排排站立或扭转呈不规则状,因而阻隔或使光束顺利通过。大多数液晶都属于有机复合物,由长棒状的分子构成。在自然状态下,这些棒状分子的长轴大致平行。将液晶倒入一个经精良加工的开槽平面,液晶分子会顺着槽排列,所以假如那些槽非常平行,则各分子也是完全平行的。·单色液晶显示器的原理LCD技术是把液晶灌入两个列有细槽的平面之间。这两个平面上的槽互相垂直(相交成90度)。也就是说,若一个平面上的分子南北向排列,则另一平面上的分子东西向排列,而位于两个平面之间的分子被强迫进入一种90度扭转的状态。由于光线顺着分子的排列方向传播,所以光线经过液晶时也被扭转90度。当液晶上加一个电压时,液晶分子便会转动,改变光透过率,从而实现多灰阶显示。LCD是依赖极化滤光器(片)和光线本身。自然光线是朝四面八方随机发散的。极化滤光器实际是一系列越来越细的平行线。这些线形成一张网,阻断不与这些线平行的所有光线。极化滤光器的线正好与第一个垂直,所以能完全阻断那些已经极化的光线。只有两个滤光器的线完全平行,或者光线本身已扭转到与第二个极化滤光器相匹配,光线才得以穿透。LCD正是由这样两个相互垂直的极化滤光器构成,所以在正常情况下应该阻断所有试图穿透的光线。但是,由于两个滤光器之间充满了扭曲液晶,所以在光线穿出第一个滤光器后,会被液晶分子扭转90度,最后从第二个滤光器中穿出。从液晶显示器的结构来看,无论是笔记本电脑还是桌面系统,采用的LCD显示屏都是由不同部分组成的分层结构。LCD由两块玻璃板构成,厚度规格有0.7mm,0.63mm,0.5mm(也可以通过物理或者化学减薄的方式做到更薄),其间由包含有液晶(LC)材料的3~5μm均匀间隔隔开。因为液晶材料本身并不发光,所以需要给显示屏配置额外的光源,在液晶显示屏背面有一块导光板(或称匀光板)和反光膜,导光板的主要作用是将线光源或者点光源转化为垂直于显示平面的面光源。背光源发出的光线在穿过第一层偏振过滤层之后进入液晶层。液晶层中的水晶液滴都被包含在细小的单元格结构中,一个或多个单元格构成屏幕上的一个像素。在玻璃板与液晶材料之间是透明的电极,电极分为行和列,在行与列的交叉点上,通过改变电压而改变液晶的旋光状态,液晶材料的作用类似于一个个小的光阀。在液晶材料周边是控制电路部分和驱动电路部分。当LCD中的电极产生电场时,液晶分子就会产生扭曲,从而将穿越其中的光线进行有规则的折射,然后经过第二层幕上显示出来。·彩色LCD显示器的工作原理对于笔记本电脑或者桌面型的LCD显示器需要采用的更加复杂的彩色显示器而言,还要具备专门处理彩色显示的色彩过滤层。通常,在彩色LCD面板中,每一个像素都是由三个液晶单元格构成,其中每一个单元格前面都分别有红色,绿色,或蓝色的过滤器。这样,通过不同单元格的光线就可以在屏幕上显示出不同的颜色。LCD克服了CRT体积庞大、耗电和闪烁的缺点,但也同时带来了造价过高、视角不广以及彩色显示不理想等问题。CRT显示可选择一系列分辨率,而且能按屏幕要求加以调整,但LCD屏只含有固定数量的液晶单元,只能在全屏幕使用一种分辨率显示(每个单元就是一个像素)。CRT通常有三个电子枪,射出的电子流必须精确聚集,否则就得不到清晰的图像显示。但LCD不存在聚焦问题,因为每个液晶单元都是单独开关的。这正是同样一幅图在LCD屏幕上为什么如此清晰的原因。LCD也不必关心刷新频率和闪烁,液晶单元要么开,要么关,所以在40~60Hz这样的低刷新频率下显示的图像不会比75Hz下显示的图像更闪烁。不过,LCD屏的液晶单元会很容易出现瑕疵。对1024×768的屏幕来说,每个像素都由三个单元构成,分别负责红、绿和蓝色的显示一所以总共约需240万个单元(1024×768×3=2359296)。很难保证所有这些单元都完好无损。最有可能的是,其中一部分已经短路(出现“亮点”),或者断路(出现“黑点”)。所以说,并不是如此高昂的显示产品并不会出现瑕疵。LCD显示屏包含了在CRT技术中未曾用到的一些东西。为屏幕提供光源的是盘绕在其背后的荧光管。有些时候,会发现屏幕的某一部分出现异常亮的线条。也可能出现一些不雅的条纹,一幅特殊的浅色或深色图像会对相邻的显示区域造成影响。此外,一些相当精密的图案(比如经抖动处理的图像)可能在液晶显示屏上出现难看的波纹或者干扰纹。现在,几乎所有的应用于笔记本或桌面系统的LCD都使用薄膜晶体管(TFT)激活液晶层中的单元格。TFT LCD技术能够显示更加清晰,明亮的图像。早期的LCD由于是非主动发光器件,速度低,效率差,对比度小,虽然能够显示清晰的文字,但是在快速显示图像时往往会产生阴影,影响视频的显示效果,因此,如今只被应用于需要黑白显示的掌上电脑,呼机或手机中。随着技术的日新月异,LCD技术也在不断发展进步。目前各大LCD显示器生产商纷纷加大对LCD的研发费用,力求突破LCD的技术瓶颈,进一步加快LCD显示器的产业化进程、降过滤层的过滤在屏液晶是这样一种有机化合物, 在常温条件下,呈现出既有液体的流动性,又有晶体的光学各向异性,因而称为“液晶”.
文章TAG:
什么 叫做 电视 电视机 什么叫做90型电视机